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Fig. 1: We propose General Flow as Foundation Affordance. Its properties and applications are analyzed to reveal its great
power. We design a scale-aware algorithm for general flow prediction and achieve stable zero-shot cross-embodiment skill
transfer in the real world. These findings highlight the transformative potential of general flow in spearheading scalable general
robot learning.

Abstract—We address the challenge of acquiring real-world
manipulation skills with a scalable framework. Inspired by
the success of large-scale auto-regressive prediction in Large
Language Models (LLMs), we hold the belief that identifying
an appropriate prediction target capable of leveraging large-
scale datasets is crucial for achieving efficient and universal
learning. Therefore, we propose to utilize flow, which represents
the future trajectories of 3D points on objects of interest, as an
ideal prediction target in robot learning. To exploit scalable data
resources, we turn our attention to cross-embodiment datasets.
We develop, for the first time, a language-conditioned prediction
model directly from large-scale RGBD human video datasets.
Our predicted flow offers actionable geometric and physics

guidance, thus facilitating stable zero-shot skill transfer in real-
world scenarios. We deploy our method with a policy based on
closed-loop flow prediction. Remarkably, without any additional
training, our method achieves an impressive 81% success rate
in human-to-robot skill transfer, covering 18 tasks in 6 scenes.
Our framework features the following benefits: (1) scalability:
leveraging cross-embodiment data resources; (2) universality:
multiple object categories, including rigid, articulated, and soft
bodies; (3) stable skill transfer: providing actionable guidance
with a small inference domain-gap. These lead to a new pathway
towards scalable general robot learning. Data, code, and model
weights will be made publicly available.

https://general-flow.github.io/


I. INTRODUCTION

We aim to reveal a potential pathway for replicating the
success of Large Language Models (LLMs) in the domain of
robot learning. Specifically, we are interested in developing
a new framework that enables scalable learning for robot
manipulation. With more data and larger model training in
the future, this framework has the potential to progressively
enhance the capabilities of robots, i.e., the scaling law that has
been observed in LLMs [82]. Inspired by the LLMs training
paradigm [14], we believe that two key elements contribute to
their strong generalization abilities: (1) a vast training dataset
with a small inference domain gap, such as all texts from the
internet in LLMs, and (2) a foundational prediction task with
appropriate supervision signals, such as text-token prediction
in LLMs. How can we translate these elements into robot
learning?

Confronted with the challenges of collecting real-world
robot data [46, 67], we pivot towards large-scale human
datasets. These data resources guarantee scalability and a
small inference domain-gap (no simulation-to-reality prob-
lem), key ingredients for effective generalization. Moreover,
human manipulation data provides a vast, real-world dataset
rich in diverse physics interactions and dynamic behaviors
that closely align with robot manipulation. The next step
is to identify a foundational prediction target conducive to
widespread downstream tasks. We propose affordance for this
role. Rooted in Gibson’s theory [31], affordance concentrates
on the potential actions associated with an object, remaining
neutral to specific manipulators. This characteristic positions
affordance as a cornerstone in cross-embodiment robot learn-
ing.

What affordance format will lead to a foundation prediction
target that is universal for object categories and provides
actionable geometric and physics guidance for downstream
applications? In this paper, we propose General Flow as
Foundation Affordance (as shown in Figure 1) to achieve
this goal. This affordance elucidates the future trajectories of
3D points on the object of interest. Our key observation is
that predicting keypoint motion is an efficient way to express
geometric and physics information. Take the task of ‘open
Safe’ as an instance (in the middle of Figure 1): the general
flow represents future positions of points on the safe. Then, a
robot can infer the safe’s articulation by noting a static flow
on the body and a moving flow on the door. It can also gain
a resilient motion primitive for the opening skill by following
the door’s flow. We term our affordance “general flow” due
to its capability for universal robot learning: (1) scalability:
leveraging different embodiment data resources, e.g., humans
and different robots; (2) universality: multiple object cate-
gories, including rigid, articulated, and soft bodies, with a large
number of potential applications (see Section II-B). (3) stable
skill transfer: providing actionable geometric and physics
information with a small inference domain-gap, even sufficient
for zero-shot execution.

In this paper, a novel framework is proposed to leverage

general flow as the training target for foundational affordance
learning. We first develop pipelines to extract 3D flow labels
directly from RGBD human video datasets. We find predic-
tion of dense flow in real-world scene point clouds remains
a formidable challenge, primarily due to the variability of
trajectory scales and the need to enhance robustness in zero-
shot scenarios. To address these issues, we employ scale-aware
strategies in both the data and model aspects, complemented
by augmentation techniques that focus on embodiment occlu-
sion (human hand and robot arm) and query point sampling
(3D points on objects of interest), thereby boosting zero-shot
stability. Remarkably, our model (named “ScaleFlow”), with
fewer parameters, surpasses existing methods, setting a strong
baseline for future research. Moreover, our system, trained at
scale, demonstrates notable competencies such as language-
driven semantic control, resilience to label noise, and spatial
commonsense understanding.

To showcase the full potential of general flow affordance,
we elect to tackle one of its most challenging applica-
tions: zero-shot cross-embodiment execution. Implementing
a straightforward heuristic policy derived from closed-loop
flow prediction, we evaluate our approach on a Franka-Emika
robot in a real-world setup. Distinct from prior methodologies
[4], without any additional training, our system accomplishes
stable zero-shot human-to-robot skill transfer. Despite
the simplicity of the derived policy, our approach, fueled
by the rich actionable geometric and physics guidance of
general flow affordance, notches an impressive 81% average
success rate in 18 diverse tasks across 6 scenes, covering
multiple categories of object types like rigid, articulated,
and soft bodies. It is also noteworthy that our approach
capably handles complex environmental challenges, such
as robot segmentation errors, novel categories, and various
robot configurations (initial gripper positions, grasp states,
and manipulation directions), to a considerable extent. These
findings highlight the transformative potential of general flow
in spearheading scalable general robot learning.

In summary, our contributions can be concluded as follows:

• We introduce the framework of General Flow as Founda-
tion Affordance, substantiating its feasibility and effec-
tiveness, which is a new pathway towards scalable robot
learning.

• We propose a robust, scale-aware algorithm that utilizes
3D flow labels derived from RGBD human video datasets,
achieving remarkable accuracy in predicting complex
real-world flow scenarios.

• We apply a simple heuristic policy, based on our model,
to a Franka-Emika robot, successfully enabling stable
zero-shot human-to-robot skill transfer across various
object categories. This results in an impressive 81%
success rate in 18 tasks across 6 scenes, marking a
significant milestone in the real-world application of flow-
based methods.



II. RELATED WORK

A. Universal Robot Learning for General Manipulation

Real-World General Robot Learning Research in general-
purpose robotic manipulation in real-world settings is con-
stantly evolving, with a focus on integrating Large Language
Models (LLMs) for high-level planning [13, 44, 37, 43, 19, 41]
and exploring direct actionable guidance through LLMs [45],
albeit with challenges due to overlooked physics dynamics.
The development of large models for direct low-level control
[11, 12, 9, 66] faces scalability issues due to intensive data
requirements [46, 67]. This highlights the need for a training
framework that achieves a balance between actionable output
and scalability. In this work, we achieve this through a univer-
sal robot learning approach based on general flow prediction.

Embodiment-Agnostic Framework for Robot Learning To
leverage large-scale, cross-embodiment data resources [62, 28,
16, 55, 27], multiple embodiment-agnostic frameworks [32]
are proposed for robot learning. Prior works [65, 56, 57, 90]
employ large-scale visual pre-training to develop embodied-
aware pretrained representations, but these demonstrate limited
generalization [58, 38, 42]. Alternative approaches seek to
derive action signals from image or video generation [20, 35,
25, 23, 21, 50, 7], but these methods are resource-intensive
and often yield redundant information. Affordances extracted
from simulators [88, 63, 81, 30, 89, 29] are another focus,
yet they struggle with the significant sim-to-real domain-gap,
particularly in 3D environments. Recent efforts [3, 4, 61]
attempt to directly acquire geometric-aware structured infor-
mation in human video but require burdensome in-lab training.
Bharadhwaj et al. [8] use hand poses as a bridge for guiding
robot manipulation, but the limited geometric information
extraction leads to unstable performance. Instead, we leverage
3D flow-based affordance to achieve reliable solutions. This
leads to a stable skill transfer with an impressive 81% success
rate in the real world.

Keypoints and Flow for Robot Learning Systems Utilizing
keypoints and flow efficiently reveals the fine-grained geomet-
ric properties of the physical world, prompting researchers
to harness their power in robot learning systems. Previous
studies [59, 26, 24, 78, 91, 79, 60, 68] use keypoints as
state descriptors for robot learning. The potential of flow
prediction has also been noted [86, 76, 17, 2, 80]. However,
these approaches either depend on embodiment-specific data,
limiting their scalability [69, 74], or are simulation-based,
facing significant sim-to-real domain-gap due to imperfect
real-world RGBD point cloud generation [22, 93]. Wen et al.
[85] utilizes flow as a prediction target for in-domain pre-
training. However, it operates in a 2D space and depends on
expert demos to train a trajectory-guided policy (could be a
downstream application of our research). In this paper, we
extend the work of Seita et al. [74], Eisner et al. [22] into
a more general version (termed “general flow”) both in data
resources and downstream applications. We acquire a large-
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Fig. 2: General flow affordance offers scalability, universality,
and stable skill transfer simultaneously, paving a new way for
scalable general robot learning.

scale 3D flow prediction model directly from RGBD human
video datasets and achieve stable zero-shot skill transfer.
Besides, we propose a novel scale-aware architecture design
and robust augmentation techniques to address the challenges
of real-world flow prediction. Compared with previous models
[70, 71, 72, 22, 74, 69], our methods achieve a significant
performance enhancement.

B. Potential Application for General Flow Prediction

General flow prediction (formally defined in the next sec-
tion) can provide a foundational affordance prior [31, 15]
for robot manipulation. Here, we outline some representa-
tive potential downstream applications. In perception, using
algorithms like clustering, general flow can facilitate coarse
part-level segmentation of objects [64] and serve as a prior
for pose prediction and tracking [95, 83, 84]. For planning,
robot motion planning can be executed [59, 26, 97, 22] based
on flow prediction. Additionally, general flow can act as a
strong policy prior [92] for robot learning, applicable in
both imitation [74, 85] and reinforcement learning [4, 3].
In safety applications, the robot can detect anomalies by
tracking keypoints and comparing them with predicted flow
[36]. Finally, general flow can also provide semantic priors
for other embodied tasks, such as Human-Object Interaction
(HOI) synthesis [52].

Verifying all these applications is beyond the scope of this
paper. Instead, we focus on the most challenging task: stable
real-world cross-embodiment zero-shot skill transfer, a task
not yet achieved by any existing flow-based work.

III. GENERAL FLOW AS FOUNDATION AFFORDANCE

A. General Flow Affordance

Manipulation tasks typically consist of functional grasp and
subsequent motion [1, 47]. In this paper, we mainly focus on
the affordance [31] of later. We introduce “general flow” as an
affordance that provides comprehensive, actionable guidance
in terms of geometry and physics for downstream manipulation
tasks:
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Definition of General Flow: Given a perception observation
S (from any embodiment) and a task instruction I , for Nq

3D query points Q ∈ RNq×3 in space, the general flow F ∈
RNq×T×3 represents the trajectories of these points over T
future timestamps.

In this work, we use point clouds from real-world RGBD
camera streams as our perception state S, eliminating sim-to-
real transfer domain-gap concerns. We term our affordance
“general flow” to emphasize its broad applicability across
different embodiments, object categories, and downstream
applications. Next, we delve into its distinct properties to
highlight its potential and effectiveness.

B. Properties of General Flow

We explore the advantageous properties of the general flow
affordance (see Figure 2) to demonstrate its capability as a
bridge to a scalable, general robot learning framework. It
provides several key benefits:

• Scalability: General flow allows for direct utilization of
cross-embodiment data, such as human video datasets,
circumventing the challenge of accessing large volumes
of real robot data [74, 66]. Moreover, representing physics
as future trajectories is a resource-efficient abstraction of
motion dynamics, especially compared with full video
generation [20, 50].

• Universality: General flow represents a unified abstrac-
tion of physical dynamics across multiple object cate-
gories, e.g., rigid, articulated, and soft bodies [29]. It also
provides support for a wide range of applications (Sec-
tion II-B). Additionally, its predictions are contingent on
language instructions, enabling the execution of various
behaviors within a single scene.

• Stable Skill Transfer: This benefit arises from two
aspects. First, general flow offers richer geometric and

physical guidance, especially compared to pretrained rep-
resentations [65, 56] and coarse motion trends [4, 8].
Second, its reliance on real-world data eliminates any
sim-to-real domain-gap issue. [22, 88].

Considering these points, we posit that general flow offers a
scalable prediction target for foundation robot learning, similar
to “text token” in Large Language Models (LLMs). Given
that scaling up has led to strong generalization and emergent
phenomena in LLMs [82, 14], we expect similar progressive
enhancements in robot capabilities through larger-scale train-
ing. In the future, we aim to achieve this by harnessing larger
RGBD datasets [34] recently released or by combining RGB
video resources [16, 33] with depth estimation techniques
[10, 50].

IV. EMBODIMENT-AGNOSTIC AND SCALE-AWARE
GENERAL FLOW PREDICTION

In this section, we propose a framework for general flow
prediction that is agnostic to specific embodiments, which
is outlined in Figure 3. We first design pipelines to extract
flow labels from RGBD human video datasets. To manage
the variable scales of trajectories and account for real-world
noise, we integrate key designs that enhance the model’s scale-
awareness and robustness in predictions. For more details
on the label pipeline and training insights, please refer to
Appendix B,C,D.

A. General Flow Label Acquisition

We introduce methods for acquiring general flow labels
from two types of cross-embodiment datasets. All tools and
pipelines will be open-source to benefit future research.

From 3D Annotated Datasets [51, 28, 55]: Utilizing the de-
tailed 3D labels from these datasets, we first randomly sample



points within the active object and then calculate its future
position using ground-truth pose and camera parameters.

From Annotation-Free RGBD Videos [27, 34]: We first per-
form Human-Object-Interaction (HOI) segmentation [75, 96]
to obtain the active object mask. Points are then sampled
within this mask, and the future 2D trajectory is tracked using
the Tracking Any Point (TAP) tools [48]. The 3D label of the
general flow is determined through back projection in both the
spatial and temporal dimensions.

To reduce the effect of noise in the annotations and
the pipeline, multiple techniques and filters are employed.
Additionally, we retain the hand mask for potential use in
subsequent training augmentations.

B. Scale-Aware Prediction Model

Our model processes natural language instructions I , scene
point cloud features Ps ∈ RNs×6 (comprising Ns points
with XYZ+RGB attributes), and Nq spatial query points
Q ∈ RNq×3 (comprising Nq points with XYZ attributes).
The aim is to predict a trajectory set, or “flow”, denoted
as F ∈ RNq×T×3. For the i-th query point pi ∈ R3, its
trajectory is defined as F i ∈ RT×3, with the absolute position
at time t represented as F i

t ∈ R3 for t = 1, 2, · · · , T .
Initially, F i

0 is set to the input position of the query point
pi. We observe enhanced performance when predicting relative
displacements rather than absolute positions. Thus, our refined
goal is to predict ∆pit = F i

t − F i
t−1 for t = 1, 2, · · · , T .

The trajectory length for each query point pi is defined as
Len(F i) =

∑T
t=1 ||∆pit||.

A primary challenge in real-world flow prediction is the
significant variance in trajectory lengths across different query
points. For instance, in the “open Safe” task, the trajectories
of points on the door are substantially longer than those
on the safe body. To address this, we apply Total Length
Normalization (TLN) to uniformly rescale trajectories. For the
original prediction target {∆pit | t = 1..T}, we define the scale
Li and normalized target {∆ni

t} as:

∆ni
t =

∆pit
Li

where Li = Len(F i) (1)

Our ablation study demonstrates that TLN yields the best
performance compared with other normalization methods (Ap-
pendix F), leading to its adoption in subsequent experiments.
The original prediction target F i can be easily reconstructed
from the predicted values of ∆ni

t and Li.
Next, we describe our model’s architecture (Figure 4).

To facilitate multimodal control, we integrate instruction se-
mantics early in the process. Instructions are converted into
semantic features using a CLIP [73] encoder, then their
dimensions are reduced via MLPs (to dI ) to align with
point features. Features of scene point clouds Ps include
3D positions and RGB values, while query point clouds Pq

substitute RGB values with a learnable embedding E ∈ R3

(it serves as a “query identifier” and remains the same for
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Fig. 4: Design architecture of our model.

all query points). We first concatenate aligned text features
with point cloud features, then concatenate the features of
scene points and query points, forming merged point cloud
features PM ∈ R(Ns+Nq)×(3+3+dI). The merged features
are processed through a PointNeXt [72] backbone with a
segmentation head to extract geometric features. The features
of query points serve as condition variables for a conditional
VAE [49, 40], generating the final predictions ∆n̂t and L̂.
For consistent scene semantics, a single latent variable z is
sampled for all query points within the same scene during
inference.

C. Loss Calculation with Scale Rebalance

For skills such as ‘open safe’, where most query points are
static (e.g., points on the safe’s body), direct model training
leads to a strong bias towards predicting stationary trajectories.
This results from a scale imbalance in our datasets. To mitigate
this, we implement scale rebalance across the dataset. First,
we employ the K-Means algorithm to cluster each data point’s
general flow by scale Li. As a result, we obtain Nr clusters
of 3D points. We represent the original point ratios of each
cluster as {ri | i = 1..Nr}. Except for the cluster with the
largest number of points, we perform resampling for all other
clusters. The resampled distribution is given by:

r̃i =
eri/τ∑Nr

i=1 e
ri/τ

(2)

which is smoother than the original distribution. By default,
we set τ to 1.

The final loss function comprises trajectory reconstruction
loss Lrecon = 1

Nq

∑
i,t ||∆n̂i

t − ∆ni
t||2, scale regression loss

Lscale = 1
Nq

∑
i,t ||L̂i − Li||2, and VAE KL-divergence loss

LKL. To minimize cumulative error, we also incorporate an
MSE loss Lacc = 1

Nq

∑
i,t ||F̂ i

t − F i
t ||2 for the recovered

accumulative shift. Thus, the total loss is expressed as:

L = Lrecon + β1Lscale + β2LKL + β3Lacc (3)



Our experiments underscore the importance of adequately
weighting Lscale by setting β1 = 25 and β2, β3 = 1, which is
crucial for optimal performance.

D. Augmentations for Zero-Shot Robustness

In light of the complex environmental challenges encoun-
tered in zero-shot real-world deployments, we propose two
technical augmentations to boost zero-shot generalization ro-
bustness:

• Hand Mask (HM) Augmentation: We encounter oc-
clusions from human hands in our training data while
facing occlusions from robot arms during deployments.
Therefore, it is crucial to enhance the model’s resilience
to embodiment occlusions. To achieve this, we manip-
ulate the presence of points on the hand in the input
scene point clouds. We choose one of three rules, with
probabilities ph1=0.5, ph2=0.2, and ph3=0.3: (1) deleting
all hand points; (2) keeping all hand points; and (3)
sampling a random anchor point on the hand and retaining
only points with a distance from the anchor greater than
12cm.

• Query Points Sampling (QPS) Augmentation: Differ-
ent downstream applications may require varying query
point sampling methods. Consequently, our model must
be adaptable to various query point distributions. We
achieve this by augmenting the training process. In each
training iteration, we select a subset of available query
points using one of two rules, based on probabilities
ps1=0.7, ps2=0.3: (1) complete random sampling; (2) ran-
domly selecting an anchor query point and then choosing
a specific number of points closest to the anchor.

Our ablation studies validate that these augmentations,
combined with scale rebalance, significantly improve zero-shot
performance without adversely affecting in-domain prediction
results (Appendix F and Table I,III).

V. GENERAL FLOW PREDICTION EXPERIMENT

A. Experimental Setting

Dataset: For rigid and articulated objects, we utilize the
HOI4D dataset [55] to train our general flow prediction model.
This extensive RGBD video dataset includes 16 categories and
800 objects, encompassing 44.4 hours of recording. It provides
comprehensive 3D labels, such as active object segmentation,
3D pose, and camera parameters. To further explore general
flow in soft object manipulation, we collect RGBD videos
for the “fold clothes” task using the RealSense D455 camera,
comprising 6 garments, 30 rollouts, and 605 extracted clips.

Baseline: Given the absence of an identical problem setting
in previous work, we adapt three types of relevant work to our
setting:

• 2D Models: To investigate the importance of 3D ge-
ometry information, we employ pretrained ResNet [39]
and Vision Transformer (VIT) [18] models from the
timm [87] library as feature extractors. We finetune these

TABLE I: Results of general flow prediction, with the best
outcomes highlighted in bold and the second-best outcome
underlined. “ADE-H” and “FDE-H” denote evaluations that
include hand points in the model’s input. Even with fewer
parameters, our model’s performance is still significantly better
than that of competitors.

Model ADE↓ FDE↓ ADE-H↓ FDE-H↓ Param(M)

ResNet18 0.0754 0.1071 / / 13.160

R3M(frozen) 0.0755 0.1056 / / 11.861

R3M(finetune) 0.0754 0.1069 / / 11.861

VAT-MART 0.0716 0.1220 0.0717 0.1220 1.577

VIT-B-224 0.0681 0.0948 / / 86.614

PointNeXt-B 0.0396 0.0537 0.0392 0.0529 4.134

PointNeXt-L 0.0383 0.0516 0.0380 0.0512 15.583

ScaleFlow-S 0.0374 0.0501 0.0372 0.0498 0.906

ScaleFlow-B 0.0358 0.0477 0.0356 0.0474 5.622

ScaleFlow-L 0.0355 0.0470 0.0352 0.0467 17.088

models, combining their 2D visual features with aligned
text features and processing them through an MLP for
direct flow regression. We also evaluate the performance
of the R3M representation [65]. Both finetuning and
frozen modes are considered for R3M.

• VAT-MART [88]: This model, originally designed for
predicting affordance with single contact points, is
adapted to our setting. We only utilize the 3D trajectory
prediction branch of VAT-MART, replacing its task in-
dentifier with aligned text features while keeping the rest
of the model unchanged.

• 3D Backbones: FlowBot3D [22] and ToolFlowNet [74]
share a similar problem setting with ours. They origi-
nally used plain PointNet++ [71] for flow prediction in
simulation without language supervision. For fair com-
parison, we implement an improved version, replacing
PointNet++ with the stronger PointNeXt [72] backbone
as a geometric feature extractor. The extracted features,
combined with aligned text features, are then processed
through an MLP for general flow regression.

We refer to our model as “ScaleFlow” in subsequent dis-
cussions. For 3D backbones and our model, we train multiple
versions with varying model sizes. More details are available
in Table I and Appendix C. To ensure a fair comparison,
scale rebalance, HM augmentation and QPS augmentation are
applied to all baselines.

Training Details: We utilize 1.5s video clips as our training
data and set the time steps of general flow to 3 for all data
sources. The dataset is divided into training, validation, and
test sets in an 80%, 10%, 10% ratio, resulting in 51693, 6950,
and 6835 clips respectively, with no identical object instances
across sets. Each sample consists of 2048 scene points sampled
in an 80×80×80 cm3 cube space around the center of the flow
start points using the furthest point sampling (FPS) algorithm.
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Fig. 5: Emergent properties of general flow prediction are
demonstrated. The arrow indicates the coarse direction of the
predicted flow. In images (a) and (b), the same input is used,
differing only in the text instruction. For (c) and (d), the color
red represents the extracted label, while green denotes the
model’s prediction. In (e) and (f), “avg” signifies the average
trajectory lengths of all query points.

During training, we randomly sample 128 query points, while
for validation, 512 points are randomly sampled. Given that
our datasets include ground-truth labels for object parts, we
distribute 512 query points across each part equally during
testing to enhance evaluation effectiveness. It’s important to
note that we do not use any part labels in model validation
and real-word testing.

We train all the models with a batch size of 128, utilizing an
AdamW optimizer and a learning rate of 0.001. For validation
and testing, we set the batch sizes to 256. All models are
trained for 200 epochs. Notably, the base version of ScaleFlow
(ScaleFlow-B), which has 5.62M parameters, completes its
training in 10 hours on a single NVIDIA GeForce RTX 3090
GPU.

Evaluation Metrics: We use 3D Average Displacement Error
(ADE) and Final Displacement Error (FDE) in meters [5, 53]
as evaluation metrics. For VAE-dependent models, metrics are
averaged over 10 samplings. We also test robustness to hand
occupancy in inputs across all 3D models, which are denoted
as ADE-H and FDE-H.

B. Prediction Results

The results in Table I demonstrate that our model achieves
superior performance on all metrics, even with fewer parame-
ters. Overall, 3D models are superior to 2D models, indicating
the importance of 3D geometry. Notably, with appropriate
augmentations, the model is robust for hand occupancy. We
show visualization of flow prediction in Appendix E. Further-
more, our ablation study (Appendix F) results quantitatively
illustrate the effectiveness of all designs.

Through large-scale training, our model not only captures
rich semantic information but also becomes adeptly con-
trollable through language modality. As depicted in Figure
5(a)(b), our model demonstrates the capability to predict varied
flows for identical input point clouds when provided with
different instructions. Furthermore, it is remarkably robust
to label noise. Figure 5(c)(d) showcases two instances of
this resilience: despite severe label noise (notable deviation
in “open Safe” and near-static in “pickup Toy Car”), our
model accurately predicts the correct trend. Additionally, our
model gains spatial commonsense through scalable training.
It dynamically adjusts its prediction scale in response to the
spatial relationships of objects, such as ending on the table and
scaling up for longer distances, as seen in Figure 5(e)(f). All
these emerging phenomena reveal the benefits of large-scale
training.

VI. ZERO-SHOT REAL WORLD MANIPULATION

In this section, we address one of the most challenging
tasks: stable zero-shot human-to-robot skill transfer in real-
world scenarios, demonstrating the foundational capabilities
of general flow prediction. Utilizing only a single prediction
model paired with a straightforward heuristic policy derived
from closed-loop prediction, we achieve an impressive 81%
average success rate. This success spans categories including
rigid, articulated, and soft bodies and covers 18 tasks across
6 distinct scenes. Deriving more effective policies through ap-
proaches like few-shot imitation learning [85] or reinforcement
learning [4] is left for future work.

A. Heuristic Policy with General Flow

Here we present our heuristic policy based on close-loop
flow prediction (Algorithm 1). The fundamental idea is to treat
the cluster of scene points near the gripper as a miniature rigid
body and forecast its future movements. Then we can derive
a corresponding transformation for robot execution.

We use a RealSense D455 RGBD camera positioned behind
the Franka-Emika Arm to capture an ego-view stream. The
robot’s static base during manipulation acts as a reference for
the FastSAM model [96] to segment the robot. More prompt
points or customized models [32] can also be employed. Post-
segmentation, we reconstruct 3D scene point clouds and select
query points near the gripper. These points, together with the
scene point clouds and the text instruction, are fed into our
ScaleFlow-B model to predict the general flow. The SVD
algorithm [6] is used to align the robot arm’s movement



Algorithm 1 Heuristic Close-Loop Policy from General Flow

Require: Task instruction I , camera stream C, pretrained
FastSAM model Mseg , pretrained general flow predictor
Mflow, operation space controller Mcontrol.
pbase ← 2D position of Franka-Emika base
pextra ← user interface (optional)
repeat

Orgbd ← C
Oseg ←Mseg(Orgbd, prompts=[pbase, pextra])
Recover Point Clouds Pscene ← BackProject(Oseg)
Gripper Position g ←Mcontrol

Query Points Q← Radius(Pscene, g, 10cm)
General Flow F ←Mflow(Pscene, Q, I)
SE(3) Transformation T ← SVD-Alignment(F )
Execution: Mcontrol(T )

until Task Finished or Failed

TABLE II: Result of real-world manipulation with one model
for all tasks. For the “open” task of “Storage Furniture”,
“pull” means execution with an opened gripper in a pulling
manner, while “grasp” is with a closed gripper on the handle.
Our method could achieve stable skill transfer among rigid,
articulated, and soft bodies in most tasks.

Object Action Success Rate

Mug
pickup 10 / 10

putdown 9 / 10

Toy Car

pickup 10 / 10

putdown 10 / 10

push 5 / 10

Clothes fold 8 / 10

Safe
open 9 / 10

close 10 / 10

Box
open 10 / 10

close 10 / 10

Prismatic Furniture (Drawer)

open (pull) 4 / 10

open (grasp) 3 / 10

close 10 / 10

Revolute Furniture (Refrigerator)

open (pull) 7 / 10

open (grasp) 9 / 10

close 10 / 10

Laptop
open 5 / 10

close 7 / 10

Average Success Rate 81% (146 / 180)

with the predicted flow. The Deoxys library [98] serves as
an impedance controller for operation space control.

B. Real World Experiment Setting

For real-world experiments (Figure 6 and Appendix G), we
select 8 objects (covering rigid, articulated and soft bodies)
across 6 scenes, encompassing 18 manipulation tasks. The

rigid category includes Mug and Toy Car. Articulated objects
are Safe, Box (which can be approximated as an atypical
design of Safe), Laptop, Refrigerator, and Drawer, while the
soft category includes Clothes. We perform “pickup” and
“putdown” actions for rigid objects, with an additional “push”
action for the Toy Car. Articulated objects undergo “open” and
“close” tasks, and the soft object is subjected to “fold” action.
(See Figure 9 in Appendix G for visualization).

As general flow affordance guides post-grasp motion, we
manually position the robotic arm for task initiation. This can
be replaced with automatic methods, as demonstrated in Ko
et al. [50]. For storage furniture with handles, we evaluate
the performance of both opened and closed grippers. Each
task undergoes 10 trials, and the success rates are recorded.
Discussions about the quantitative success criteria of each task
can be found in Appendix G. We also discuss the real-world
baseline model [4] in Appendix H.

C. Results and Analysis

For result analysis, we focus on the following keywords and
ask the following questions:

• Transfer Ability: Does general flow facilitate stable
zero-shot human-to-robot skill transfer?

• Segmentation Error: How robust is the system against
segmentation errors and robot occupancy?

• Novel Category: Can this model generalize to the shapes
of new categories that are significantly different from the
training instances?

• Grasp Manner: Is this object-centric system robust to
variations in grasp state and gripper position?

• Diverse Setting: How well can general flow adapt to
diverse scenes and manipulation directions?

• Augmentation Effectiveness: What impact do the de-
signed technical augmentations have on enhancing the
system’s zero-shot capabilities?

Figure 6 presents a comprehensive overview of our analysis
distribution. Following this, we delve into a detailed quantita-
tive and qualitative examination to address these questions.

Stable Zero-Shot Skill Transfer Our results, presented in Ta-
ble II, demonstrate that using a general flow as a bridge enables
our framework to achieve stable zero-shot human-to-robot skill
transfer. An impressive 81% success rate in such challenging
settings underscores the strong transfer ability of general flow
in cross-embodiment robot learning. To our knowledge, this
is the first flow-based work to reach such a level of zero-shot
transfer performance in real-world experiments. For tasks with
success rates below 60%, we meticulously analyze the reasons
and propose feasible future solutions in Appendix L.

Robustness to Segmentation Error Our findings reveal that
random hand mask augmentation during training significantly
enhances the model’s robustness to errors in the segmentation
maps of FastSAM [96]. Figure 6(a) illustrates this advantage
with two examples. Notably, even with almost failed robot
segmentation (as in the “open safe” task), our method still
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Fig. 6: We achieve stable zero-shot human-to-robot skill transfer in the real world, encompassing 18 tasks with rigid, articulated,
and soft objects across 6 scenes. It also demonstrates several key strengths of the general flow, such as robustness to
segmentation errors, adaptability to novel categories, and versatility in grasping manners and manipulation directions.
For additional insights, including execution videos and visualizations of general flow, please refer to Appendix E,G and project
website.

predicts meaningful flow to facilitate task completion in a
closed-loop manner. Coupled with the with-hand prediction
evaluation results (Table I), this evidences the strong adapt-
ability of general flow to both human hand and incomplete
Franka-Emika robot body occupancy. These findings lay the
groundwork for extending general flow to a broader spectrum
of robot and human data.

Generalization to Novel Categories To probe the boundary
of general flow’s generalization capabilities, we experiment
with a “Box” category, which can be approximated as an
atypical design of “Safe”, referred to “Box (Atypical Safe)”.
For comparison, we also test a conventional “Safe”. Figure
6(b) presents these instances. Surprisingly, the success rate for
manipulating “Box” is even higher than that of the ordinary
one (100% vs. 90% for the “open” task, Table II), attributed
to the structure of “Box” allowing more trajectory deviation
without losing grip on the door. This underscores the strong
generalization capacity of general flow methods, likely due to
our model’s training on real-world datasets, which avoids any
simulation-to-reality domain-gap and focuses the model on the
geometric and physics features of point clouds.

Robustness to Grasp Position and Manner As general flow

is an embodiment-agnostic and object-centric method, it is
expected to be resilient to variations in gripper position and
grasp manner. To test this, we conduct manipulations using
two storage pieces (a Refrigerator and a Drawer), leveraging
their handles for different grasp methods. Figure 6(c) displays
these different execution manners. Our model successfully
completes tasks regardless of the gripper’s state. The impact
of the gripper being open or closed varies with the task;
for instance, a closed gripper yields a higher success rate in
“open Refrigerator”. The closed gripper imposes constraints
that prevent it from slipping off the door, and as a result, the
impedance controller is then able to correct minor deviations
in the action. Conversely, for “open Drawer”, performance
decreases due to the gripper slipping on the soft leather handle.
We also ensure a diverse range of gripper positions, observing
minimal impact on prediction and execution efficacy. The
object-centric nature of general flow lays a solid foundation
for leveraging diverse policy behaviors during execution.

Handling Diverse Scenes and Directions We examine the
extent to which general flow can handle changes in scene
and direction. Diverging from previous works’ settings [22]
(demonstrated in Appendix G), we distribute our tasks across
six diverse scenes and perform scene-based prediction, elim-

https://general-flow.github.io/
https://general-flow.github.io/


TABLE III: Result of the ablation study in the real world. We
take the success rate as the evaluation metric.

open Safe close Drawer Avg

full 9 / 10 10 / 10 95%

w/o Scale Rebalance 7 / 10 8 / 10 75%

w/o HM Augmentation 8 / 10 6 / 10 70%

w/o QPS Augmentation 5 / 10 4 / 10 45%

inating the need for clean segmentation of the manipulated
object. Despite these challenging conditions, our model proves
robust against interference from environmentally irrelevant
items. We also vary the direction of movable objects during
our experiments. Figure 6(d) showcases the most challenging
example in this regard. We find that our heuristic policy suc-
cessfully pushes a Toy Car in different directions to a certain
extent. With more data training, we anticipate the model will
achieve a deeper understanding of 3D visual mechanisms and
semantics.

Role of Technical Augmentation Finally, we investigate the
role of designed augmentations in enhancing the robustness of
zero-shot transfer. We select two representative tasks (“open
Safe” and “close Drawer”) for evaluation. The ablation com-
parisons included:

• w/o Scale Rebalance: Utilizing the original flow label
without rebalancing based on scale cluster results.

• w/o HM Augmentation: Setting ph1 = 1.0, which
means erasing all points on the hand throughout the entire
training process.

• w/o QPS Augmentation: Setting ps1 = 1.0, which
means relying solely on random sampling for training
query point selection.

The results in Table III indicate that each augmentation
significantly contributes to robust zero-shot execution. No-
tably, hand augmentation markedly affects tasks with sub-
stantial embodiment occupancy and occlusion, such as “close
Drawer”. Query point sampling augmentation emerges as par-
ticularly influential. Currently, the PointNeXt [72] architecture
inherently couples the extraction of query point features,
leading to a reliance on query point sampling augmentation
in our framework. We anticipate that future advancements in
disentanglement architecture within 3D learning will address
this issue thoroughly.

VII. CONCLUSION

In this paper, we introduce General Flow as a Foundation
Affordance for scalable robot learning. For the first time,
we develop a flow prediction model directly from large-scale
RGBD human video datasets and successfully deploy it with
a heuristic policy for stable zero-shot human-to-robot skill
transfer. Our framework marks a stride in achieving scalability,
universality, and stable skill transfer concurrently. We believe
our work paves the way for innovative research in scalable
general robot learning. In the future, we plan to further extend

general flow learning to RGB datasets [16, 33], utilize depth
estimation techniques [10, 50], and leverage larger RGBD
datasets [34] that emerged concurrently with our work.
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APPENDIX

A. Overview of Appendix

In this appendix, we offer additional implementation details
and a discussion of general flow. The label pipeline, code and
model weights will be released in the future. Readers are also
welcome to check out more details with them. This appendix
is structured as follows:

• Label Extraction: we delve into the pipeline specifics
utilized for extracting general flow labels from RGBD
human video datasets in App. B.

• Model Architecture and Training: we provide an in-
depth look at our model’s architecture (App. C) and the
details of its training process (App. D).

• Flow Visualizations: We present visualizations of gen-
eral flow predictions in both in-domain data and zero-shot
real-world executions in App. E.

• Ablation Study: A comprehensive quantitative ablation
study is conducted in App. F, rigorously testing the
effectiveness of our algorithmic design.

• Real-World Experiment: This section is dedicated to an
expansive elucidation of real-world experiments, encom-
passing the experimental setup (App. G), baseline com-
parisons (App. H), robot system development (App. I),
policy derivation strategies (App. J), inference latency
measurements (App. K), and analysis of failure cases
(App. L).

• Limitations and Future Directions Insights into the
current limitations of our approach and prospective di-
rections for improvement are shared in App. M.

• Codebases: Acknowledgements are extended to the mul-
tiple codebases that have been instrumental in supporting
this project in App. N.

Additional videos and flow visualizations are included
on project website. For guidance on viewing these materials,
please refer to the ’README.pdf’.

B. Label Extraction Pipeline

General flow labels can be directly extracted from 3D
human datasets or RGBD videos. Figure 7 displays some data
resources we utilize.
B.1 From 3D Annotated Datasets

We select the HOI4D dataset [55] as our primary resource
due to its relatively large scale. This dataset offers com-
prehensive 3D labels, which are crucial for supporting 4D
(point clouds + timestamps) Human-Object-Interaction (HOI)
research. The labels we employ include RGBD images, camera
parameters, object pose labels, scene segmentation masks, and
action labels.

For effective closed-loop control, we divide the original
action clips into multiple 1.5-second sub-clips, spaced at 0.15-
second intervals, with a total of 3 time steps. For sub-clips
that contain non-contact prefix actions (such as moving hands
towards objects), we create 4 extended sub-clips with start
timestamps within the semantic-less prefix.

Fig. 7: Examples of our cross-embodiment data resource

The model’s input comes from the first image of each
sub-clip. We identify and match key elements (objects and
hands involved in the manipulation) from the instructions with
their corresponding masks, considering the remainder as a
background mask. Each mask is converted into a point cloud
from RGBD values and down-sampled to one point per 0.02cm
voxel. To adjust for noise in the HOI4D masks, we expand the
hand mask by 8 pixels and shrink the object masks by 2 pixels.

We then proceed to extract general flow labels. Initial
query points are selected within the masks of the objects of
interest. Addressing segmentation noise, we maintain only the
overlapping masks from the previous, current, and subsequent
frames, using a homography matrix for projection onto the
current frames. These points are chosen randomly, and their
future trajectories are calculated based on ground-truth poses.
We project all data back to the initial frame using the camera
parameter labels. To correct for camera shake in the extrinsic
parameter labels, we identify trajectories with shifts under 0.02
cm, compute their average as the camera shake, and deduct
this from all points.

B.2 From RGBD Human Videos
Given the constraints of current RGBD Human-Object In-

teraction (HOI) datasets, which are either small in scale [28]
or lack semantic richness [27] (mainly limited to pick & place
actions), and considering the notable scarcity of resources
for soft objects, we opt to collect our own RGBD videos.
Coincidentally, Grauman et al. [34] releases a large-scale,
semantically rich 4D HOI dataset during the same period as
our project, representing a promising resource for future work.
Our collection of RGBD videos for the ”fold Clothes” task,
captured with a D455 depth camera, includes 30 rollouts of
6 different types of clothing, resulting in 605 extracted clips.
We plan to release this dataset in the future.

Echoing the process used in HOI4D, we maintain a duration
of 1.5 seconds for each clip, with intervals of 0.15 seconds.
Initially, we apply HOI segmentation [94] to acquire masks
for hands and active objects. Utilizing HOI detection results
from [75], we input bounding box outputs into FastSAM [96]
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Fig. 8: Visualization of flow prediction. For additional insights, including more human video predictions and zero-shot results
for all 18 tasks, please refer to project website.

for refined results. We retain only the masks with a confidence
level above 0.5 for subsequent processing. After segmentation,
we randomly sample 1024 points on the active object and
employ co-tracker [48] to track their future positions in 2D
pixel space. We exclude trajectories affected by occlusion,
disappearance, or breakdown of depth values midway, and
project the remaining trajectories back to 3D space and the
first frame of the clip to derive the final general flow labels.

Our pipeline functions automatically, without the need for
manual intervention. As general flow captures the geomet-
ric dynamics of the physical world, extending beyond mere
object-centric interactions, our system effectively manages
noise factors such as segmentation and point sampling errors
(e.g., selecting query points on non-target objects due to seg-
mentation mistakes), particularly during large-scale training.

C. Model Architecture

ScaleFlow: While the main body of our paper covers the
bulk of our design, we offer further details in this section.
The alignment width for CLIP [73] text features is set at 6,
aligning with the dimension of the original point cloud fea-
tures (RGB+XYZ). In the conditional Variational Autoencoder
(VAE) [49] segment, we utilize a 2-layer Multilayer Perceptron
(MLP) to encode the latent variable. This is followed by
another 2-layer MLP that functions as the VAE decoder.
We employ separate 2-layer MLPs for scale and normalized-
trajectory prediction, each featuring a hidden dimension of
512. For ScaleFlow-B, our backbone configuration mirrors
that of PointNeXt-B [72]. In ScaleFlow-L, we increase the
backbone width from 32 to 64. Conversely, for ScaleFlow-S,
PointNeXt-B is substituted with PointNeXt-S, and the CVAE
utilizes a simpler 1-layer encoder and decoder, each with a

hidden dimension of 384. The loss function parameters are
configured as β1 = 25 and β2, β3 = 1, with a focus on
enhancing scale prediction. We maintain the latent variable
dimension at 16. For more detailed information, please consult
the configuration files in our code repository.

Baseline: We preserve the architecture from the original
repository, with the sole modification of incorporating text
features before the prediction MLP to transition the model into
a multimodal version. We derive aligned text features from the
original CLIP features. The dimension of these text features
is set to 32. For ResNet [39] and Vision Transformer [18],
we utilize the standard ‘ResNet18’ and ‘VIT-B-224’ versions,
respectively. The default pretrained weights are loaded using
the Timm library [87]. For R3M [65], its ‘ResNet18’ version
is employed. In our architecture, all MLPs dedicated to the
final flow prediction consist of 2 layers, featuring hidden
dimensions of 512 and 256, respectively.

D. Training Details

This section outlines additional training details not covered
in the main text. For each data point, we start by calculating the
center of the initial points of the general flow. We then create
a cubic space centered on this point, with each side measuring
80 cm (a 40 cm perception range suffices for most tasks). To
standardize point numbers for batch training, we use sampling
(with the Furthest Points Sampling Algorithm) or re-sampling
to obtain 2048 scene points. Standard augmentation techniques
for point cloud prediction [72], including random rotation,
shifting, scaling, coordinate normalization, color jittering, and
feature dropping, are applied.
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In each training iteration, we randomly select 128 trajec-
tories from the available flow labels. Additionally, to boost
robustness in downstream zero-shot prediction, we implement
technical augmentations as described in the main paper. For
scale rebalance, we set the number of clusters to 4 and
the default temperature to 1. The training process utilizes
the AdamW optimizer with a learning rate of 0.001 and a
weight decay of 0.0001. We incorporate 10 warmup epochs,
followed by a cosine scheduler for 200 epochs. The training
for ScaleFlow-B can be completed within 10 hours using an
Intel(R) Xeon(R) Gold 5220R CPU and a single NVIDIA
GeForce RTX 3090 GPU.

E. Flow Visualization

We showcase the capabilities of our model, ScaleFlow-B,
through visualizations of its predictions. These demonstrations
include applications on original human videos as well as
zero-shot real-world executions, as depicted in Figure 8. The
visualizations highlight our model’s proficiency in predicting
semantically and geometrically meaningful flows, even amidst
the challenges posed by noisy real-world point clouds and
significant embodiment occlusions. For a more comprehensive
view, including zero-shot predictions for all 18 tasks, please
refer to project website.

F. Quantitative Ablation Study

Experiment Setting: We conduct an ablation study to
evaluate the key design elements of our methods. The variants
tested include:

• w/o Text EarlyFusion: aligned text features are concate-
nated with PointNeXt features (having a dimension of 32)
instead of the original point clouds.

• w/o Scale Normalization: the Conditional Variational
AutoEncoder (CVAE) predicts general flow without scale
normalization. We explore two versions: one with abso-
lute position prediction and another with relative displace-
ment prediction.

• w TDN Scale Normalization: this approach employs
normalization to adjust the length of absolute displace-
ment to 1, rather than the total length.

• w SDN Scale Normalization: normalization is used to
set the length of each step to 1.

• w β1 = 1 (weight of scale-loss): this test is designed
to assess the importance of adequately weighting scale
prediction in the loss function.

• w/o central crop: all scene point clouds in a 2m op-
eration space are fed into the model without cube space
cropping. The active object points average only about 2%
in this setup.

• w/o robustness augmentation: these variants omit three
types of technical augmentations (Scale Rebalance, Hand
Mask Augmentation, Query Point Sampling Augmenta-
tion) to determine their impact on the model’s prediction
accuracy in our benchmark.

TABLE IV: Results of the ablation study on general flow
prediction, with the best results highlighted in bold and the
second-best results underlined.

Test-ADE

(w/o hand)

Test-FDE

(w/o hand)

full 0.0358 0.0477

w/o Text EarlyFusion 0.0370 0.0495

w/o Scale Normalization (relative) 0.0376 0.0504

w/o Scale Normalization (absolute) 0.0381 0.0512

w TDN Scale Normalization 0.0374 0.0500

w SDN Scale Normalization 0.0377 0.0510

w β1 = 1 (weight of scale-loss) 0.0368 0.0493

w/o central crop 0.0399 0.0538

w/o Scale Rebalance 0.0359 0.0478

w/o HM Augmentation 0.0366 0.0488

w/o QPS Augmentation 0.0358 0.0477

Experiment Result: The results of the ablation study are
summarized in Table IV. For all variants except those without
robustness augmentation, there is a noticeable degradation in
model performance. In regards to the ablation of the three
technical augmentations, it is evident that they do not detri-
mentally affect benchmark performance. Notably, the hand
mask augmentation even significantly enhances in-domain
prediction, which is an interesting observation.

G. Real-World Environment Setting

In our real-world experiment (Figure 9), we select 8 objects,
including rigid, articulated, and soft bodies, as featured in our
human video resources. We manually define multiple tasks
and their corresponding success conditions for each object,
resulting in a total of 18 distinct tasks. For a complete listing
of these tasks, please refer to the content in the main paper
(Section VI-B). For “Refrigerator” and “Drawer”, we refer to
them as ”Storage Furniture” in the instructions. “Box” is also
referred to as “Safe” since it can be seen as an approximation
of an atypical design of “Safe”.

These objects are arranged into 6 scenes, as depicted in
Figure 9. For objects that are movable, such as “Mug” and
“Toy Car”, we randomly adjust their positions and orientations
to add variability. It is worth noting that our experimental
setup more accurately mirrors practical real-world scenarios
compared to previous studies like Eisner et al. [22]. Our
setup features diverse scenes and eliminates the necessity
for clean object segmentation (Figure 10). This resemblance
underscores the robustness and stability of our system in real-
world scenarios.

The criteria for successful task completion varied. For
“pickup” and “push” tasks, moving the object in the correct
direction by more than 15cm is deemed successful. The “Put-
down” action is deemed successful if the object is ultimately
placed on the desktop and the orientation of the object is
appropriate (for example, the mouth of a mug facing vertically
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Scene1: Box Scene2: Laptop, Toy Car Scene3: Clothes

Scene4: Refrigerator Scene5: Drawer, Safe Scene6: Mug

open, close
pickup, 

putdown, push

open, close

fold

open(grasp, pull), close

open(grasp, pull), close

open, close

pickup, putdown

Fig. 9: This figure illustrates the distribution of 8 objects across 18 tasks, encompassing various categories such as rigid,
articulated, and soft bodies, arranged into 6 distinct scenes. Manipulated objects are highlighted within yellow bounding boxes,
with each corresponding task denoted by a green box.

Limited and Clean Scenes Clean Segmentation

Previous Work Setting

Diverse and Complex Scenes Scene-Based Prediction

General Flow Experiment Setting (Ours)

Fig. 10: Our environment setting is much closer to practical
real-world situations compared to previous work [22].

upwards). For the “open” task of the revolute articulation
structure, an opening of 80 degrees is considered a success.
For its “close” task, bringing the object to within less than
5 degrees of the fully closed state is regarded as successful.
5 cm (to fully open or close state) is used as a criterion for
prismatic structure. The ”fold” is considered successful if one
end of the garment reaches the other end.

Previous Work w/o Occlusion Previous Work with Occlusion

Fig. 11: Affordance prediction from our baseline model [4] in
the real world. The text prompts for the grounding module are
set to “safe” and “drawer”.

H. Real-World Baseline

To the best of our knowledge, Bahl et al. [4] is the only
open-source work that shares a similar setting with ours,
which involves learning a low-level affordance model directly
from real-world human videos. We deploy this model in our
experimental environment, using ’safe’ and ’drawer’ as text
prompts for the grounding module [54]. Figure 11 shows
the visualization of the affordance prediction. Although it
provides semantically meaningful predictions to some extent,
it is limited by: (1) inadequate generalization for accurate
motion direction prediction; (2) providing only 2D guidance
without depth information; and (3) significant disturbances
caused by embodiment occlusions. Given that the predicted
post-grasp trajectories do not offer sufficient 3D guidance for
closed-loop execution, we refrain from further robot execution
trials.



Fig. 12: Real-world deployment setting

I. Development of the Robotic System

Figure 12 shows a snapshot of our real-world deployment
setup. We use a RealSense D455 RGBD camera to capture
point cloud streams at a resolution of 1280 × 720, which is
lower than the 1920 × 1080 resolution used in HOI4D [55].
Consequently, we opt for 0.01cm voxel downsampling during
deployment, as opposed to the 0.02cm used in model training.
The calibration parameters for our camera-robot system are
(qw=0.911, qx=-0.015, qy=0.410, qz=-0.032) for orientation
and (x=-0.265, y=0.260, z=1.095) for position. This config-
uration mimics a human ego-view manipulation perspective,
beneficial not only for minimizing inference domain-gap but
also aligning with practical applications in mobile robots. We
utilize the RealSense camera’s ROS driver for data acquisition.

The robot’s base, static during manipulation, serves as a
prompt for the FastSAM [96] model for robot segmentation.
For enhanced accuracy, more prompt points or customized
models [32] can be employed. Post-segmentation, we recon-
struct 3D scene point clouds and select query points within
10cm of the gripper. These, along with the scene point clouds
and the text instruction, are fed into our prediction model
(ScaleFlow-B in our experiments) to obtain the anticipated
general flow. We then apply the SVD algorithm[6] to obtain
a robust transformation aligned with the predicted flow. The
robot arm is driven by the Deoxys library [98] to follow
the derived SE(3) transformation in a closed-loop manner,
achieving a 0.4s inference latency (0.05s without FastSAM).

In practical applications, we note that the 6DoF controller
for operational space in Deoxys lacks the necessary control
precision for minute distances. Consequently, for trajectories
shorter than 5 cm, we adopt a strategy of consolidating all
steps into one and scaling this unified step to 5 cm in length.
This method significantly enhances control accuracy over
shorter distances, boosting the system’s overall effectiveness
and efficiency. Approximately 25% of predictions activate this
workaround, which is considered acceptable given that the
majority of tasks do not demand high levels of dexterity.
Future improvements could include more precise controllers
and calibration. The loop rate for our ROS system is set at

TABLE V: The inference latency of each part in our pipeline.
The results is the average value of 10 measurements.

Part Time (ms)

Data Acquisition 3.2

FastSAM Segmentation 347.6

PointCloud Generation 30.8

Query Points Sampling 0.3

Flow Prediction (ScaleFlow-B) 22.1

Heuristic Policy Generation 1.7

Total (with Segment) 405.7 (2.5Hz)

Total (without Segment) 58.1 (17.5Hz)

20 Hz. For safety, we manually confirm each planning step,
although we find this almost unnecessary, as all experiments
proceed with continuous pressing and confirmation without
any delays.

J. Heuristic Policy Derivation

This section offers an in-depth explanation of our heuristic
policy derivation. We begin by obtaining the gripper pose from
the Deoxys API and projecting it into the camera’s coordinates
using calibration parameters. We select points within a 10cm
distance from the gripper. Utilizing these points, we predict
general flow and proceed to derive a 6DoF end-effector motion
plan in camera space. For point clouds kt and kt+1, each
containing N points and representing adjacent timestamps, our
objective is to identify a 6DoF transformation with rotation R̂
and translation T̂ that fulfills the following criteria:

wi =

(
1

di+β∑N
j=1

1
dj+β

)
R̂, T̂ = argmin

R,T
wi

∥∥kit+1 − (R · kit + T )
∥∥2 (4)

where wi denotes the regression weight inversely proportional
to the distance di between the i-th query points and the
gripper position, with β set to 1. We solve Equation 4
using the SVD algorithm [6] for robust results. The acquired
transformation T = (R̂, T̂ ) is then projected back into the
robot’s coordinates and adjusted to the gripper’s coordinates
for controller execution.

K. Inference Latency

Table V details the average inference latency of each
component in our pipeline, based on 10 measurements of the
”open(grasp) Refrigerator” task. The significant bottleneck is
the FastSAM segmentation, which contributes to 85.7% of
the latency. This highlights the need for more efficient open-
world segmentation models in future work. Without FastSAM
segmentation, general flow prediction is not the sole system
bottleneck; stream acquisition of point clouds also presents
substantial room for improvement.



L. Failure Case Analysis

We analyze failure cases for tasks with success rates below
60% and suggest potential improvement methods:

• “Push Toy Car” (50% success rate): The Toy Car’s
direction requires a sophisticated semantic understanding.
To improve our model’s capability in this area, additional
data collection is essential. Due to the toy car’s small
size, integrating a wrist camera could also help mitigate
significant occlusion problems and enhance performance.

• “Open Drawer” (30% grasping, 40% pulling): The mix-
ture of prismatic and revolute structures in the HOI4D
[55] datasets leads to a slight tendency towards including
rotational components in predictions. Its negative impact
is amplified in our fabric cabinet with high friction. The
leather handle on the drawer also poses a challenge, often
slipping from the gripper. Future enhancements could
include using larger datasets with more robust language
semantics [34] and redesigning the gripper.

• “Open Laptop” (50%): The laptop’s thin lid often results
in poor or incorrect RGBD point cloud generation. Utiliz-
ing point clouds fused from multiple camera views could
ameliorate this issue.

Failure case videos are available on project website. In
conclusion, most of these problems are addressable in future
deployments. We systematically summarize these limitations
and potential improvements in the next section.

M. Future Directions

We discuss the limitations of our current system and outline
potential directions for future improvements:

• Scaling Up with More Data: Our model still lacks
sufficient geometric guidance for complex tasks. Addi-
tionally, current data lacks fine-grained language control,
for example, summarizing both revolute and prismatic
structures as ”Storage Furniture.” More extensive data
training could resolve these problems. Fortunately, the
release of large-scale, semantically rich human manipu-
lation datasets like [34] coincides with our work provide a
rich resource for future research. Moreover, RGB datasets
[16, 33] with depth estimation techniques [10, 50] could
also be valuable training resources.

• Enhanced Downstream Policy Derivation: Our current
system relies on a basic heuristic policy based on general
flow prediction. This approach has limitations, such as
failing when no points surround the gripper. Future devel-
opments could leverage both few-shot imitation learning
[85] and reinforcement learning [4] for better policy
derivation.

• Advancements in Deployment Techniques: There is
considerable scope for improvement in real-world de-
ployment. Incorporating wrist cameras and multi-view
cameras could help alleviate occlusion issues and enhance
point cloud quality. More accurate camera calibration and
end-effector control could also be helpful for performance
enhancement.

N. Codebases

We extend our gratitude to the following codebases for their
support in the development of this work:

• The model training framework and the 3D backbone are
based on the codebase from Qian et al. [72].

• For HOI4D point-cloud data processing, we adopt meth-
ods from Liu et al. [55].

• For Hand-Object-Interaction (HOI) detection, we utilize
the 100DOH tools from Shan et al. [75].

• FastSAM (Zhao et al. [96]) is used for all segmentation
in this work.

• The co-tracker from Karaev et al. [48] is employed to
track points in pixel space.

• Implementations of ResNet, Vision Transformer, R3M,
and the VAT-MART baseline are adopted from Bao et al.
[5], Nair et al. [65], and Wu et al. [88].

• The ros-perception and data stream acquisition are based
on Shridhar et al. [77].

• We inherit the SVD transformation solver directly from
Zhong et al. [97].

• The impedance controller for the end-effector is adopted
from the Doexys library (Zhu et al. [98]).

https://general-flow.github.io/
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